It turns out measuring tax competition based on statutory tax rates is misleading. Because the effective tax rates – the tax you actually pay divided by taxable income – most likely be lower than the statutory rates. If two companies get different tax incentives, they will have different effective tax rates. In a nutshell, statutory tax rates are too narrow to measure various tax concessions a government may offer.
Alternative measures were then developed. Put forward by Devereux and Griffith (1999), Effective Average Tax Rate (EATR) and Effective Marginal Tax Rate (EMTR) are two such measures that are widely used. However, as Altshuler and Goodspeed (2002) noted, EATR/EMTR are more likely only valid within firm-specific/project-specific scope. Altshuler and Goodspeed themselves use corporate tax revenue divided by GDP as their tax rates measure. This also has limitations that it is too wide, because it assumes that tax collection/tax enforcement efforts are ceteris paribus, and that the cyclical effect of economy is negligible.
Tax Attractiveness Index
Tax Attractiveness Index (TAI) was developed by Keller and Schanz (2013), and further updated by Dinkel, Keller, and Schanz (2016). TAI covered 20 different components of real-world tax systems. Those 20 components are: Anti-avoidance rules, CFC (Controlled Foreign Corporation) rules, corporate income tax rate, depreciation, membership in EU, group taxation regime, incentive for holding companies, loss carryback, loss carryforward, intellectual property/patent box regime, personal income tax rate, research and development incentives, taxation of capital gains, taxation of dividends received, thin capitalization rules, transfer pricing rules, tax treaty network, withholding tax rate of dividends, withholding tax rate of interest, and withholding tax rate of royalties.
TAI codes and calculates all of the above-mentioned features to yield an index of 0 to 1. Under the TAI framework, the less a country tax the income and regulate the taxes, the more attractive she is. So a country with 0% tax rate for any income – personal or corporate – and no taxation rules as specified above, will have TAI score of 1. On the other hand, a country which tax any income with 100% rate, and has strict taxation rules as specified above, will have TAI score of 0. Most tax havens have the score of 0,9.
TAI is not too narrow as statutory tax rate, and not too wide as tax revenue per GDP measure. (It still has limitations, see “Caveat” below*.) But to my knowledge, there hasn’t any study using TAI as a measure in the tax competition setting. So this will be first.
ASEAN countries included in this blogpost are Indonesia, Malaysia, Singapore, the Philippines, Thailand, and Vietnam. The period covered is 2007-2016, based on the availability of Tax Attractiveness Index in www.tax-index.org. Data for the control variables are taken from World Bank and Freedom House.
What follows is a wonkish preambule about the statistics. If you're interested in the results, proceeds to "Results" and "Conclusions."
Specifying the Nash Game
I use a spatial autoregressive model to estimate Nash game between jurisdiction, in this case ASEAN countries. This technique is widely used to estimate strategic interactions (Duncan and Gerrish 2014; Devereux et al. 2008; Brueckner 2003; Altshuler and Goodspeed 2002). Nash game here meaning country A influences country B and C’s taxation policies, but is also influenced by B and C’s taxation policies, simultaneously. The choice of neighbor is based on geographical distance (using CEPII data).
I employ instrumental variable – 2SLS (Two-Staged Least Squares**), with tax attractiveness index of the neighbors as the instrumented variable. The distance from neighbors is then used to compute the weighting matrix. The fitted values for the neighbor’s TAI are then used as instruments in the second-stage regression.
The equations are as follow:
where τ is the Tax Attractiveness Index (coded TAX), indexed by country and year, W is the weight matrix, and ρ is the coefficient of tax competition. The lower equation is the first-stage regression used to estimate the predicted weighted neighbor TAI. Here α is a vector of parameters on the instruments, γ is a vector of parameters on the exogenous regressors, and υit is the first stage error term. Wτ j≠i,t is the predicted weighted tax rates derived from the first stage regression.
The vector X is a standard set of controls used in the literature. I follow Duncan and Gerrish (2014) to use logged per capita GDP (GDP), inflation rate (INF), trade openness in constant prices (imports plus exports divided by GDP, coded as OPN), government expenditures as a percent of GDP (EXP), the Freedom House index of political freedom (FRE), the proportion of the population both over 65 (OLD) and under 15 (YOU), and the size of the rural population (RUR), μi and λt are country and year fixed effects, respectively. Neighbors’ variables will have the letter N- before the coding.
Kleibergen and Paap Lagrange multiplier test suggests that the instrumental variables are rightly identified***. Additionally, the Hansen J test of over-identifying restrictions does not reject the null hypothesis of a well-identified model. Therefore the instruments seem reasonably well suited for this purpose. Standard errors are made robust even in the presence of heteroscedasticity and autocorrelation.
Results
NTAX (neighbors’ Tax Attractiveness Index) is statistically significant at 5%. Interestingly, the negative coefficient on NTAX suggests that an ASEAN country adopts stricter taxation policy when her neighbors adopt looser policy. And the opposite is also true. An ASEAN country adopts looser tax policy when her neighbors get stricter. Following Duncan and Gerrish (2014), while a priori expectation is a positive coefficient, it theoretically can take on any value between −1 and 1, which indicates strategic substitutes and complements, respectively. In this case, what happens is strategic substitutes.
Conclusions
The empirical findings in the tax literature seem to converge on values ∈ (0, 1], i.e. strategic complements, which is when countries compete to offer low tax rates or looser taxation policy as a response – the so-called race to the bottom. However, studies by Brueckner (2003), Altshuler and Goodspeed (2002) also find negative responses as what happens here.
What happens here? Either one of these: an ASEAN country opportunistically offering more taxation incentives to attract investment as her neighbors tighten their tax policies. Or, a country enacts stricter taxation rules to mitigate tax avoidance. This serves as a response to neighbors offering lax taxation rules. It's not a tax competition in the traditional, race to the bottom sense. This warrants further study.
Caveats
* The limitation of TAI is that it assumes that a multinational corporation (MNC) exploits taxation rules holistically instead of partially. In reality, this is not the case. Let me give you an example. Country A offers R&D incentives, country B offers no withholding tax on interest income, and country C offers low corporate income tax rates. Suppose TAI of A is better than B and C. By TAI’s assumption, an MNC will prefer to locate in A. This is not what happens in real life. Most likely this will happen:
The manufacturing will be located in country C. The research division will be located in country A. The loan for making the factory in country C will be funneled by a special purpose vehicle in country B.
In other words, it is not accurate to assume that those 20 components of TAI should be given equal weights. Tax planning strategy of an MNC will utilize the tax rules of different countries, for different purposes. This is also what happens in "treaty shopping"/"treaty abuse" cases.
** The usage of 2SLS in small sample statistics is justified by Bollen (1996). Monte Carlo experiments also shows that 2SLS performs well in small sample, see Islam (1998). For similar usage of IV estimation in small sample, see Acemoglu, Johnson, and Robinson (2001)
*** The result of Kleibergen-Paap Lagrange Multiplier (LM) indicates a rather weak instrument (only significant at 10% instead of 5%).
References:
Acemoglu, D., Johnson, S., and Robinson, J. A.. 2001. The Colonial Origins of Comparative Development: An Empirical Investigation. The American Economic Review, Vol. 91, No. 5 (Dec., 2001), pp. 1369-1401
Altshuler, R. and Goodspeed, T. J. 2002. Follow the Leader? Evidence on European and U.S. Tax Competition. Mimeo
Brueckner, J. K. 2003. Strategic Interaction among Governments: An Overview of Empirical Studies. International Regional Science Review 26 No. 2, pp. 175-188
Bollen, K. A. 1996. “An Alternative Two Stage Least Squares (2SLS) Estimator for Latent Variable Equations”. Psychometrika, March 1996, Volume 61, Issue 1, pp 109–121
Devereux, M. P. and Griffith, R. 1999. The Taxation of Discrete Investment Choices. The Institute for Fiscal Studies. Working Paper Series No. W98/16
Devereux, M. P., Lockwood, B. and Redoano, M. 2008. Do Countries Compete over Corporate Tax Rates? Journal of Public Economics 92, pp. 1210-1235
Dinkel, A., Keller, S., and Schanz, D.. 2016. Tax Attractiveness and the Location of German-controlled Subsidiaries. Review of Managerial Science, pp 1-47
Duncan, D., and Gerrish, E. 2014. Personal Income Tax Mimicry: Evidence from International Panel Data. Int Tax Public Finance (2014) 21, pp. 119–152
Islam, N. 1998. Small Sample Performance of Dynamic Panel Data Estimators: A Monte Carlo Study on the Basis of Growth Data. Emory University Department of Economics Working Paper
Keller, S. and Schanz, D.. 2013. Measuring Tax Attractiveness across Countries. arqus-Working Paper No. 143.
Datasource:
www.tax-index.org
data.worldbank.org
www.cepii.fr
freedomhouse.org